electronic papers

Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

2,2'-Spirobi(1,3-benzodithiole)

Kazumasa Ueda,* Masaki Iwamatsu, Toyonari Sugimoto, Toshiji Tada and Kei-ichiro Nishimura

Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599, Japan Correspondence e-mail: kazueda@riast.osakafu-u.ac.ip

Received 7 February 2000 Accepted 3 March 2000

Data validation number: IUC0000065

The X-ray structure analysis of 2,2'-spirobi(1,3-benzodithiole), C₁₃H₈S₄, has been performed. The molecule has crystallographic twofold rotation symmetry, the axis passing through the spiro-C atom. The four S atoms are arranged around the spiro-C atom in two almost orthogonal CS2 planes. However, because of large bending of the two five-membered rings, close contact is present between two connected C atoms on the benzo group of each 1,3-benzodithiole ring and one S atom on the other 1,3-benzodithiole ring.

Comment

In the title compound, (I), the S1-C1, S1-C2, S2-C1, S2-C7, $S1^i$ -C1, $S1^i$ -C2ⁱ, $S2^i$ -C1 and $S2^i$ -C7ⁱ bond distances [symmetry code: (i) y, x, 1 - z] are in the range 1.77–1.84 Å, which are near to the values reported so far (1.80–1.81 Å; Sutton, 1958, 1965). The C1-S1-C2, C1-S2-C7, $C1-S1^{i} C2^{i}$ and $C1-S2^{i}-C7^{i}$ bond angles are in the range 94–96° and slightly smaller than the normal values (97–99°; Sutton, 1958, 1965). The S1-C1-S2 and S1¹-C1-S2¹ planes make a dihedral angle of 93.8 (1)°. The five-membered C1-S1-C2-C7-C2 and $C1-S1^{i}-C2^{i}-C7^{i}-C2^{i}$ rings have an envelopelike conformation, as seen from the dihedral angles between

the C1/S1/S2 and S1/S2/C7/C2 planes $[35.0 (1)^{\circ}]$, resulting in a dihedral angle of 79.2 $(1)^{\circ}$ between the two benzene rings. As the result of large bending of the two five-membered rings, C2 and C2ⁱ or C7 and C7ⁱ atom on the benzo group of one 1,3benzodithiole ring and the S2 or S2ⁱ atom on the other 1,3benzodithiole ring become closer to each other. In particular, the closest contact can be seen between S2 and C2ⁱ atoms

[3.58 (1) Å]. The contact distance is near to the sum of van der Waals' radii of C (1.75 Å) and S atoms (1.85 Å; Pauling, 1960).

The ¹H NMR spectrum of (I) in DMF- d_7 showed each of two kinds of signals due to the ortho-protons (H3/H3ⁱ and H6/-H6ⁱ) at δ 7.26 (2H, dd, J = 2.57, 3.33 Hz) and 7.46 (2H, dd, J = 2.57, 3.33 Hz), and to the *meta*-protons (H4/H4ⁱ and H5/H5ⁱ) at δ 7.27 (2H, *t*, *J* = 3.33 Hz) and 7.44 (2H, *t*, *J* = 3.33 Hz) on the benzo groups. The different chemical shifts between H3/H3¹ and H6/H6¹ protons and between H4/H4¹ and H5/H5¹ protons are caused by the magnetic anisotropy due to the sulfur lone pairs in close proximity to H3/H3¹ and H4/ H4¹ protons, as seen from the crystal structure. On the other hand, only three kinds of signals (138.22, 129.01 and 124.64 p.p.m.) due to the benzo C atoms were observed together with the spiro-carbon signal (90.01 p.p.m.) in the ¹³C NMR spectrum. This result clearly suggests that also in solution the five-membered rings maintain an envelope-like conformation without rapid flipping on the NMR time-scale (Horn et al., 1993; Setaka et al., 1999).

Experimental

The title compound was first obtained as a by-product (<5% yield) in the thermal decomposition of 2-(n-amyloxybenzo)-1,3-dithiole (Nakayama, 1975). In order to improve the yield, the following method was now used. 2-Methylthio-1,3-benzodithiolium tetrafluoroborate was reacted with an equimolar amount of benzene-1,2dithiol in the presence of a catalytic amount of *p*-toluenesulfonic acid in 1,2-dichloroethane at 356 K for 3 h. The crude product was purified by silica-gel column chromatography with an eluent of *n*-hexane-/benzene (v/v = 3:1), followed by recrystallization from benzene/nhexane to give colourless crystals of (I) (m.p. 393 K) in 23% yield.

Cr	vstal	data
~ .		~~~~~~

$C_{13}H_8S_4$	Mo $K\alpha$ radiation
$M_r = 292.45$	Cell parameters from 25
Tetragonal, P4 ₁ 2 ₁ 2	reflections
a = 6.287 (6) Å	$\theta = 10.411.9^{\circ}$
c = 31.93 (1) Å	$\mu = 0.723 \text{ mm}^{-1}$
V = 1261.9 (8) Å ³	T = 293.2 K
Z = 4	Prismatic, colorless
$D_x = 1.539 \text{ Mg m}^{-3}$	$0.20 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer $h = 0 \rightarrow 8$ $k = 0 \rightarrow 5$ ω -2 θ scans 934 measured reflections $l = 0 \rightarrow 41$ 934 independent reflections 3 standard reflections 755 reflections with $F^2 > 2\sigma(F^2)$ every 150 reflections $\theta_{\rm max} = 27.33^\circ$

Refinement

Refinement on F R = 0.0347wR = 0.0453S = 1.325803 reflections $[I > 0.7\sigma(I)]$ 77 parameters

intensity decay: 0.70%

H-atom parameters not refined
$w = 1/[\sigma^2(F_o) + 0.00040 F_o ^2]$
$(\Delta/\sigma)_{\rm max} = 0.039$
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \mathrm{e} \mathrm{\AA}^{-3}$

Table 1Selected geometric parameters (Å, °).

S1-C1	1.821 (3)	C2-C7	1.407 (5)
S1-C2	1.77 (1)	C3-C4	1.404 (9)
S2-C1	1.843 (3)	C4-C5	1.388 (6)
S2-C7	1.768 (10)	C5-C6	1.380 (8)
C2-C3	1.391 (8)	C6-C7	1.391 (8)
C1 - S1 - C2	94.7 (2)	S1-C2-C7	116.5 (3)
C1 - S2 - C7	95.2 (2)	C3-C2-C7	120.1 (4)
$S1 - C1 - S1^{i}$	112.5 (3)	C2-C3-C4	118.7 (5)
S1-C1-S2	107.24 (8)	C3-C4-C5	120.5 (4)
$S1 - C1 - S2^{i}$	108.0 (2)	C4-C5-C6	121.2 (4)
S1-C1 ⁱ -S2	107.2 (4)	C5-C6-C7	119.0 (5)
$S1-C1^{i}-S2^{i}$	108.0(1)	S2-C7-C2	115.2 (3)
$S2-C1-S2^{i}$	114.0 (4)	S2-C7-C6	124.2 (4)
S1-C2-C3	123.3 (4)	C2-C7-C6	120.6 (4)
$S1 - C1 - S1^{i} - C2^{i}$	150.1 (1)	$C1 - S1^{i} - C2^{i} - C3^{i}$	159.9 (4)
S1-C1-S2-C7	-31.0(2)	$C1 - S1^{i} - C2^{i} - C7^{i}$	-21.3 (3)
$S1 - C1 - S2^{i} - C7^{i}$	-152.5(2)	C1-S2-C7-C2	18.7 (3)
S1-C2-C3-C4	176.7 (3)	C1-S2-C7-C6	-162.9(3)
S1-C2-C7-S2	1.7 (4)	$C1 - S2^{i} - C7^{i} - C2^{i}$	18.7 (3)
S1-C2-C7-C6	-176.8(3)	$C1 - S2^{i} - C7^{i} - C6^{i}$	-162.9(3)
S2-C1-S1-C2	31.5 (2)	C2-C3-C4-C5	0.1 (6)
$S2 - C1 - S1^{i} - C2^{i}$	-91.8(2)	C2-C7-C6-C5	0.0 (6)
$S2 - C1 - S2^i - C7^i$	88.4 (4)	C3-C2-C7-C6	2.0 (5)
S2-C7-C2-C3	-179.5(3)	C3-C4-C5-C6	2.0 (6)
S2-C7-C6-C5	-178.3(3)	C4-C3-C2-C7	-2.0(6)
C1-S1-C2-C3	159.9 (3)	C4-C5-C6-C7	-2.0(6)
C1-S1-C2-C7	-21.3(3)		
	. ,		

Symmetry code: (i) y, x, 1 - z.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1985); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.
- Horn, T., Baumgarte, L., Gerghel, L., Enkelmann, V. & Mlen, K. (1993). *Tetrahedron Lett.* **34**, 5889–5892.
- Molecular Structure Corporation (1985). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1999). *TEXSAN*. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nakayama, J. (1975). Synthesis, pp. 168–169.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
- Setaka, W., Kabuto, C. & Kira, M. (1999). Chem. Lett. pp. 317-318.
- Sutton, L. E. (1958, 1965). Editor. Tables of Interatomic Distances and Configuration in Molecules & Ions, The Chemical Society Special Publication, No. 11, p. 18. London: Chemical Society.