Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2,2'-Spirobi(1,3-benzodithiole)

Kazumasa Ueda,* Masaki Iwamatsu, Toyonari Sugimoto, Toshiji Tada and Kei-ichiro Nishimura

Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599, Japan
Correspondence e-mail: kazueda@riast.osakafu-u.ac.jp

Received 7 February 2000
Accepted 3 March 2000

Data validation number: IUC0000065
The X-ray structure analysis of $2,2^{\prime}$-spirobi(1,3-benzodithiole), $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~S}_{4}$, has been performed. The molecule has crystallographic twofold rotation symmetry, the axis passing through the spiro-C atom. The four S atoms are arranged around the spiro-C atom in two almost orthogonal CS_{2} planes. However, because of large bending of the two five-membered rings, close contact is present between two connected C atoms on the benzo group of each 1,3-benzodithiole ring and one S atom on the other 1,3-benzodithiole ring.

Comment

In the title compound, (I), the $\mathrm{S} 1-\mathrm{C} 1, \mathrm{~S} 1-\mathrm{C} 2, \mathrm{~S} 2-\mathrm{C} 1, \mathrm{~S} 2-$ $\mathrm{C} 7, \mathrm{~S} 1^{\mathrm{i}}-\mathrm{C} 1, \mathrm{~S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}, \mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 1$ and $\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$ bond distances [symmetry code: (i) $y, x, 1-z$] are in the range $1.77-1.84 \AA$, which are near to the values reported so far (1.80-1.81 \AA; Sutton, 1958, 1965). The C1-S1-C2, C1-S2-C7, C1-S1 $1^{i}-$ $\mathrm{C} 2^{\mathrm{i}}$ and $\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$ bond angles are in the range $94-96^{\circ}$ and slightly smaller than the normal values ($97-99^{\circ}$; Sutton, 1958, 1965). The $\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$ and $\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}$ planes make a dihedral angle of $93.8(1)^{\circ}$. The five-membered $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-$ $\mathrm{C} 7-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$ rings have an envelopelike conformation, as seen from the dihedral angles between

(I)
the $\mathrm{C} 1 / \mathrm{S} 1 / \mathrm{S} 2$ and $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{C} 7 / \mathrm{C} 2$ planes [35.0 (1) ${ }^{\circ}$], resulting in a dihedral angle of $79.2(1)^{\circ}$ between the two benzene rings. As the result of large bending of the two five-membered rings, C2 and $\mathrm{C} 2^{\mathrm{i}}$ or C 7 and $\mathrm{C} 7^{\mathrm{i}}$ atom on the benzo group of one $1,3-$ benzodithiole ring and the S 2 or $\mathrm{S} 2^{\mathrm{i}}$ atom on the other 1,3benzodithiole ring become closer to each other. In particular, the closest contact can be seen between S 2 and C^{i} atoms
[3.58 (1) \AA]. The contact distance is near to the sum of van der Waals' radii of $\mathrm{C}(1.75 \AA$) and S atoms ($1.85 \AA$; Pauling, 1960).

The ${ }^{1} \mathrm{H}$ NMR spectrum of (I) in DMF- d_{7} showed each of two kinds of signals due to the ortho-protons $\left(\mathrm{H} 3 / \mathrm{H}^{\mathrm{i}}\right.$ and $\mathrm{H} 6 /-$ $\left.\mathrm{H} 6^{\mathrm{i}}\right)$ at $\delta 7.26(2 \mathrm{H}, d d, J=2.57,3.33 \mathrm{~Hz})$ and $7.46(2 \mathrm{H}, d d, J=$ $2.57,3.33 \mathrm{~Hz}$), and to the meta-protons $\left(\mathrm{H} 4 / \mathrm{H} 4^{\mathrm{i}}\right.$ and $\left.\mathrm{H} 5 / \mathrm{H} 5^{\mathrm{i}}\right)$ at $\delta 7.27(2 \mathrm{H}, t, J=3.33 \mathrm{~Hz})$ and $7.44(2 \mathrm{H}, t, J=3.33 \mathrm{~Hz})$ on the benzo groups. The different chemical shifts between $\mathrm{H} 3 / \mathrm{H} 3^{i}$ and $\mathrm{H} 6 / \mathrm{H} 6^{i}$ protons and between $\mathrm{H} 4 / \mathrm{H} 4^{\mathrm{i}}$ and $\mathrm{H} 5 / \mathrm{H} 5^{\mathrm{i}}$ protons are caused by the magnetic anisotropy due to the sulfur lone pairs in close proximity to $\mathrm{H} 3 / \mathrm{H} 3^{\mathrm{i}}$ and $\mathrm{H} 4 / \mathrm{H} 4^{\mathrm{i}}$ protons, as seen from the crystal structure. On the other hand, only three kinds of signals ($138.22,129.01$ and 124.64 p.p.m.) due to the benzo C atoms were observed together with the spiro-carbon signal (90.01 p.p.m.) in the ${ }^{13} \mathrm{C}$ NMR spectrum. This result clearly suggests that also in solution the five-membered rings maintain an envelope-like conformation without rapid flipping on the NMR time-scale (Horn et al., 1993; Setaka et al., 1999).

Experimental

The title compound was first obtained as a by-product ($<5 \%$ yield) in the thermal decomposition of 2-(n-amyloxybenzo)-1,3-dithiole (Nakayama, 1975). In order to improve the yield, the following method was now used. 2-Methylthio-1,3-benzodithiolium tetrafluoroborate was reacted with an equimolar amount of benzene-1,2dithiol in the presence of a catalytic amount of p-toluenesulfonic acid in 1,2-dichloroethane at 356 K for 3 h . The crude product was purified by silica-gel column chromatography with an eluent of n-hexane-
/benzene ($v / v=3: 1$), followed by recrystallization from benzene $/ n$ hexane to give colourless crystals of (I) (m.p. 393 K) in 23% yield.

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~S}_{4}$
$M_{r}=292.45$
Tetragonal, $P 4_{1} 2_{1} 2$
$a=6.287$ (6) \AA
$c=31.93(1) \AA$
$V=1261.9(8) \AA^{3}$
$Z=4$
$D_{x}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 25 reflections
$\theta=10.4-11.9^{\circ}$
$\mu=0.723 \mathrm{~mm}^{-1}$
$T=293.2 \mathrm{~K}$
Prismatic, colorless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer $\omega-2 \theta$ scans
934 measured reflections
934 independent reflections
755 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$\theta_{\text {max }}=27.33^{\circ}$

Refinement

Refinement on F
$R=0.0347$
$w R=0.0453$
$S=1.325$
803 reflections $[I>0.7 \sigma(I)]$
77 parameters

$$
\begin{aligned}
& h=0 \rightarrow 8 \\
& k=0 \rightarrow 5 \\
& l=0 \rightarrow 41 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 0.70 \%
\end{aligned}
$$

H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00040\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.039$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-C1	$1.821(3)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.407(5)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.77(1)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.404(9)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.843(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.388(6)$
$\mathrm{S} 2-\mathrm{C} 7$	$1.768(10)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.380(8)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.391(8)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.391(8)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	$94.7(2)$	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 7$	$116.5(3)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 7$	$95.2(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$120.1(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	$112.5(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.7(5)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$107.24(8)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.5(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}$	$108.0(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.2(4)$
$\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}-\mathrm{S} 2$	$107.2(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.0(5)$
$\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}-\mathrm{S} 2^{\mathrm{i}}$	$108.0(1)$	$\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 2$	$115.2(3)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}$	$114.0(4)$	$\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 6$	$124.2(4)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.3(4)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$120.6(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	$150.1(1)$	$\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$	$159.9(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 7$	$-31.0(2)$	$\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$	$-21.3(3)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$	$-152.5(2)$	$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 2$	$18.7(3)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$176.7(3)$	$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 6$	$-162.9(3)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{S} 2$	$1.7(4)$	$\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	$18.7(3)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-176.8(3)$	$\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 6^{\mathrm{i}}$	$-162.9(3)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	$31.5(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(6)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	$-91.8(2)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$0.0(6)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 2^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$	$88.4(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$2.0(5)$
$\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$-179.5(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$2.0(6)$
$\mathrm{S} 2-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$-178.3(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$-2.0(6)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$159.9(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-2.0(6)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 7$	$-21.3(3)$		

Symmetry code: (i) $y, x, 1-z$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Horn, T., Baumgarte, L., Gerghel, L., Enkelmann, V. \& Mlen, K. (1993). Tetrahedron Lett. 34, 5889-5892.
Molecular Structure Corporation (1985). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nakayama, J. (1975). Synthesis, pp. 168-169.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Setaka, W., Kabuto, C. \& Kira, M. (1999). Chem. Lett. pp. 317-318.
Sutton, L. E. (1958, 1965). Editor. Tables of Interatomic Distances and Configuration in Molecules \& Ions, The Chemical Society Special Publication, No. 11, p. 18. London: Chemical Society.

